[vsesdal]
Количество страниц учебной работы: 12,7
Содержание:
“1. Дано
U 110
R1 1
R2 3
R3 4
R4 5
R5 10
R6 4
Определить Rэкв и Iоб
2.Дано
U 220
R 42
Xl 32
cosφ1 0.97
cosφ’1 1
ϕ 0
f 50
1. Определить при разомкнутом ключе
Ia, Il, I, cos φ, P, Ql, S.
2. Определить при замкнутом ключе и частичной компенсации сдвига фаз
С1, Хс, Ic, Ip, I, S, Q, Qc, cos φ
3. Полная компенсация сдвига фаз. Какую нужно с?
3. Дано
Uab = 220
Z1 = 16
Z2 = 30
Z3 = 32
φz1 = 30
φz2 = 30
φz3 = 45”
Учебная работа № 186624. Контрольная Физика, 3 задачи 30
Выдержка из похожей работы
Решение численными методами краевой задачи математической физики
…..я сила, то граничные условия имеют следующий
вид:
Начальные
условия
Так как колебания происходят под воздействием растягивающей
силы и в начальный момент стержень находится в покое, то начальные условия
можно записать следующим образом:
1.2
Вывод уравнения движения из основных законов физики
Стержень – упругое твёрдое тело, длина которого значительно
превышает его поперечные размеры.
Рассмотрим стержень цилиндрической формы, на который действует
вдоль оси стержня сила .
Исследуем такие колебания стержня, при которых поперечные сечения
площадью , перемещаясь вдоль оси стержня, остаются плоскими и параллельными
друг другу. Данные предположения оправдываются, если поперечные размеры стержня
малы по сравнению с его длиной.
Продольные колебания возникают тогда, стержень предварительно
немного растягивается (или сжимается), а затем предоставляется самому себе.
Рис. 1. Стержень
Направим ось вдоль оси стержня и будем считать, что в состоянии покоя концы
стержня имеют соответственно абсциссы и . Рассмотрим сечение ; его абсцисса в состоянии покоя. Смещение этого сечения в любой
момент времени будет характеризоваться функцией
Найдём относительное удлинение участка стержня, ограниченного
сечениями и .
Если абсцисса сечения в состоянии покоя , то смещение этого стержня в момент времени с точностью до бесконечно малых высшего порядка равно:
Отсюда ясно, что относительное удлинение стержня в сечении с
абсциссой в момент времени выражается производной:
Считая, что стержень совершает малые колебания, можно вычислить
натяжение, вызывающие это удлинение. Натяжение подчиняется закону Гука. Найдем
величину силы натяжения , действующей на сечение :
где – площадь поперечного сечения стержня, а модуль упругости (модуль Юнга) материала стержня.
Соответственно сила , действующая на сечение равна
Возьмем элемент стержня, заключённый между сечениями и . На этот элемент действуют силы и , приложенные в этих сечениях и направленные вдоль оси . Результирующая этих сил имеет величину
и направлена также вдоль оси .
С другой стороны, ускорение элемента равно , вследствие чего, используя второй закон Ньютона , мы можем написать равенство
(1)
где объёмная плотность стержня, масса выделенного участка стержня
Сокращая и вводя обозначение , для свободных продольных колебаний однородного стержня можно получить дифференциальное уравнение в частных производных:
(2)
Форма этого уравнения показывает, что продольные колебания стержня
носят волновой характер, причём скорость распространения продольных волн
определяется формулой
Если дополнительно предположить, что к стержню приложена внешняя
сила , рассчитанная на единицу объёма и действующая вдоль оси стержня,
то к правой части уравнения (1) добавится слагаемое и уравнение (1) примет вид:
(3)
(4)
это уравнение вынужденных продольных колебаний стержня.
1.3
Проверка задачи по критерию размер…