[vsesdal]
Количество страниц учебной работы: 17,9
Содержание:
“Задача 1
Подзадача 1.1
В цепь синусоидального тока (рис. 1.1) с напряжением и частотой включена катушка с активным сопротивлением и индуктивным сопротивлением
Определить ток в катушке; активную, реактивную и полную мощности; коэффициент мощности.
Подзадача 1.2
Определить ток в цепи рис. 1.2 и напряжение на каждом элементе. Построить векторную диаграмму напряжений и определить режим работы цепи.
Подзадача 1.3
Параллельно катушке с параметрами ; подключают батарею конденсаторов с сопротивлением (рис. 1.4) для получения резонанса. Какой величины должна быть ёмкость конденсатора? Как изменится ток в цепи, реактивная и полная мощности?
Задача 2
В трёхфазную цепь с линейным напряжением 380 В требуется включить три группы ламп накаливания При этом в фазе А должно быть 8 ламп, в фазе В – 12 и в фазе С – 16 ламп.
Номинальное напряжение каждой лампы составляет 220 В, а номинальная мощность –
Начертить схему включения ламп. Найти фазные сопротивления, токи, активную мощность каждой фазы и всего потребителя. Построить векторную диаграмму напряжения и токов. Определить ток в нейтральном проводе. Как повлияет на режим работы цепи обрыв нулевого провода?
Задача 3
В трёхфазную сеть с линейным напряжением 380 В включена треугольником симметричная активно – индуктивная нагрузка (рис. 3.1).
Задача 4 Определить:
Номинальный и пусковой токи; номинальный , пусковой и максимальный моменты; номинальную частоту вращения ротора ; мощность, потребляемую из сети при номинальной нагрузке на валу; полные потери мощности в двигателе ; критическое скольжение
Как изменится пусковой момент двигателя при уменьшении сетевого напряжения на 20% и возможен ли пуск электродвигателя с номинальной нагрузкой на валу ротора?
Рассчитать по приближённым формулам и построить механические характеристики M(s) и n(M).

Стоимость данной учебной работы: 585 руб.

 

    Форма заказа работы
    ================================

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Учебная работа № 186813. Контрольная Физика (4 задачи)

    Выдержка из похожей работы

    …….

    Решение обратных задач теплопроводности для элементов конструкций простой геометрическо формы

    ….. по определенной информации о температурном поле требуется восстановить причинные характеристики, то имеем ту или иную постановку обратной задачи теплообмена.
    Постановки обратных задач, в отличие от прямых, не соответствуют физически реализуемым событиям. Например, нельзя обратить ход теплообменного процесса и тем более изменить течение времени. Таким образом, можно говорить о физической некорректности постановки обратной задачи. Естественно, что при математической формализации она проявляется уже как математическая некорректность (чаще всего неустойчивость решения) и обратные задачи представляют собой типичный пример некорректно поставленных задач в теории теплообмена.
    Граничная ОЗТ — восстановление тепловых условий на границе тела. К этому типу задач отнесем также задачу, связанную с продолжением решения уравнения теплопроводности от некоторой границы, где одновременно заданы температура Т( х*, т) и плотность теплового потока q( х*, т);
    Организация охлаждения конструкции камер сгорания является одним из важнейших вопросов проектирования и по сравнению с другими типами тепловых машин усложняется тем, что тепловые процессы протекают при высоких температурах К и давлениях. Так как высокотемпературные продукты сгорания движутся по камере с очень большой скоростью, то резко возрастают коэффициент конвективной теплоотдачи от горячих продуктов сгорания к стенкам камеры и конвективные тепловые потоки , доходящие в критическом сечении сопла до 23,26 – 69,78. Кроме того, теплообмен в конструкции характеризуется высоким уровнем радиации в камере, что приводит к большим лучистым тепловым потокам /13/.
    Вследствие мощных суммарных конвективных и лучистых тепловых потоков в стенке камеры температура ее может достигать значений превышающих (1000 – 1500С. Величина этих потоков определяется значениями режимных параметров, составом продуктов сгорания в ядре газового потока и в пристеночном слое, а также температурой внутренней поверхности конструкции. Из-за изменения диаметра проточной части по длине теплопровод от продуктов сгорания оказывается неравномерным. Неравномерным является также распределение температуры по периметру, обусловленное изменением состава продуктов сгорания.
    Коэффициент теплоотдачи от продуктов сгорания определяется с учетом совместного воздействия конвективного и лучистого теплового потоков в соответствующем сечении конструкции узла по значениям параметров (давление, состав и температура продуктов сгорания в ядре газового потока и в пристеночном слое) на установившемся режиме эксплуатации /13/.
    Время выхода рассматриваемых конструкций на установившийся тепловой режим соизмеримо и может оказаться даже большим времени их работы при эксплуатации. В этих условиях задача определения теплового состояния в период работы сводится к расчету прогрева их под воздействием высокотемпературных продуктов сгорания /1, 2/.
    Рассмотрим следующую схему корпуса камеры сгорания.
    На поверхности в сечении располагается по две точки замера, расположенных в диаметрально противоположных точках периметра корпуса.
    В сечении I – I корпуса сопла можно представить в виде однослойной неограниченной пластины, двухслойной – сечение II – II (Рис.1).
    Расчетные схемы элементов конструкции представлены на рисунке 2 и 3.
    Обратная тепловая задача для пластины формулируется следующим образом. Требуется по замерам температуры и теплового потока к пластине (рис.2) при X = 0 найти изменения температуры и теплового потока на пов…