решить задачу
Количество страниц учебной работы: 15,5
Содержание:
Задачи 1
Подзадача 1.1
В цепь синусоидального тока (рис. 1.1) с напряжением и частотой включена катушка с активным сопротивлением и индуктивным сопротивлением
Определить ток в катушке; активную, реактивную и полную мощности; коэффициент мощности.

Рис. 1.1. Схема электрической цепи к подзадаче 1.1

Подзадача 1.2
Определить ток в цепи рис. 1.2 и напряжение на каждом элементе. Построить векторную диаграмму напряжений и определить режим работы цепи.

Рис. 1.2. Схема электрической цепи у подзадаче 1.2

Подзадача 1.3
Параллельно катушке с параметрами ; подключают батарею конденсаторов с сопротивлением (рис. 1.4) для получения резонанса. Какой величины должна быть ёмкость конденсатора? Как изменится ток в цепи, реактивная и полная мощности?

Рис. 1.4. Схема электрической цепи к подзадаче 1.3

Задача 2
В трёхфазную цепь с линейным напряжением 380 В требуется включить три группы ламп накаливания При этом в фазе А должно быть 8 ламп, в фазе В – 12 и в фазе С – 16 ламп.
Номинальное напряжение каждой лампы составляет 220 В, а номинальная мощность –
Начертить схему включения ламп. Найти фазные сопротивления, токи, активную мощность каждой фазы и всего потребителя. Построить векторную диаграмму напряжения и токов. Определить ток в нейтральном проводе. Как повлияет на режим работы цепи обрыв нулевого провода?

Задача 3
В трёхфазную сеть с линейным напряжением 380 В включена треугольником симметричная активно – индуктивная нагрузка (рис. 3.1).

Рис. 3.1. Схема электрической цепи к задаче 3
Определить:
1. Фазные и линейные токи.
2. Коэффициент мощности.
3. Активную, реактивную и полную мощности нагрузки.
4. Построить векторную диаграмму.

Задача 4
Технические данные электродвигателя типа 4А80А2:
Стоимость данной учебной работы: 585 руб.

 

    Форма заказа работы
    ================================

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Подтвердите, что Вы не бот

    Учебная работа № 188844. Контрольная Физика 4 задачи

    Выдержка из похожей работы

    …….

    Решение обратных задач теплопроводности для элементов конструкций простой геометрическо формы

    …..ребуется восстановить причинные характеристики, то имеем ту или иную постановку обратной задачи теплообмена.
    Постановки обратных задач, в отличие от прямых, не соответствуют физически реализуемым событиям. Например, нельзя обратить ход теплообменного процесса и тем более изменить течение времени. Таким образом, можно говорить о физической некорректности постановки обратной задачи. Естественно, что при математической формализации она проявляется уже как математическая некорректность (чаще всего неустойчивость решения) и обратные задачи представляют собой типичный пример некорректно поставленных задач в теории теплообмена.
    Граничная ОЗТ — восстановление тепловых условий на границе тела. К этому типу задач отнесем также задачу, связанную с продолжением решения уравнения теплопроводности от некоторой границы, где одновременно заданы температура Т( х*, т) и плотность теплового потока q( х*, т);
    Организация охлаждения конструкции камер сгорания является одним из важнейших вопросов проектирования и по сравнению с другими типами тепловых машин усложняется тем, что тепловые процессы протекают при высоких температурах К и давлениях. Так как высокотемпературные продукты сгорания движутся по камере с очень большой скоростью, то резко возрастают коэффициент конвективной теплоотдачи от горячих продуктов сгорания к стенкам камеры и конвективные тепловые потоки , доходящие в критическом сечении сопла до 23,26 – 69,78. Кроме того, теплообмен в конструкции характеризуется высоким уровнем радиации в камере, что приводит к большим лучистым тепловым потокам /13/.
    Вследствие мощных суммарных конвективных и лучистых тепловых потоков в стенке камеры температура ее может достигать значений превышающих (1000 – 1500С. Величина этих потоков определяется значениями режимных параметров, составом продуктов сгорания в ядре газового потока и в пристеночном слое, а также температурой внутренней поверхности конструкции. Из-за изменения диаметра проточной части по длине теплопровод от продуктов сгорания оказывается неравномерным. Неравномерным является также распределение температуры по периметру, обусловленное изменением состава продуктов сгорания.
    Коэффициент теплоотдачи от продуктов сгорания определяется с учетом совместного воздействия конвективного и лучистого теплового потоков в соответствующем сечении конструкции узла по значениям параметров (давление, состав и температура продуктов сгорания в ядре газового потока и в пристеночном слое) на установившемся режиме эксплуатации /13/.
    Время выхода рассматриваемых конструкций на установившийся тепловой режим соизмеримо и может оказаться даже большим времени их работы при эксплуатации. В этих условиях задача определения теплового состояния в период работы сводится к расчету прогрева их под воздействием высокотемпературных продуктов сгорания /1, 2/.
    Рассмотрим следующую схему корпуса камеры сгорания.
    На поверхности в сечении располагается по две точки замера, расположенных в диаметрально противоположных точках периметра корпуса.
    В сечении I – I корпуса сопла можно представить в виде однослойной неограниченной пластины, двухслойной – сечение II – II (Рис.1).
    Расчетные схемы элементов конструкции представлены на рисунке 2 и 3.
    Обратная тепловая задача для пластины формулируется следующим образом. Требуетс…