[vsesdal]
Количество страниц учебной работы: 8,7
Содержание:
“Задача №10
По наклонной плоскости вверх катиться без скольжения полый обруч. Ему сообщена начальная скорость 3,14 м/с, параллельная наклонной плоскости. Установить, какой путь пройдет обруч, если угол наклона плоскости 30°.
Задача №20
Начальная фаза колебаний точки 15°. Через сколько времени от начала движения смещение точки первый раз достигает величины равной половине амплитуды? Период колебаний равен 12 с.
Задача №30
Во сколько раз скорость распространения ультразвука в стали больше, чем в свинце?
Задача №40
Воздух находится в баллоне при температуре 290 К и давлении 1,38 атм. Определить число соударений молекулы за единицу времени.
Задача №50
Вычислить молярные Ср и Сv и удельные теплоемкости ср и cv неона и водорода, считая их идеальными газами.
Задача №60
Скорость звука в азоте при некоторой температуре 720 м/с. Определите скорость звука в аргоне при той же температуре газа.
Литература
1. Трофимова Т.И. Курс физики – М.: Высшая школа, 1999
2. Чертов А.Г., Воробьев А.А. Задачник по физике – М.: Высшая школа, 1998
”
Учебная работа № 186678. Контрольная Физика, 6 задач 45
Выдержка из похожей работы
Решение обратных задач теплопроводности для элементов конструкций простой геометрическо формы
…..если по определенной информации о температурном поле требуется восстановить причинные характеристики, то имеем ту или иную постановку обратной задачи теплообмена.
Постановки обратных задач, в отличие от прямых, не соответствуют физически реализуемым событиям. Например, нельзя обратить ход теплообменного процесса и тем более изменить течение времени. Таким образом, можно говорить о физической некорректности постановки обратной задачи. Естественно, что при математической формализации она проявляется уже как математическая некорректность (чаще всего неустойчивость решения) и обратные задачи представляют собой типичный пример некорректно поставленных задач в теории теплообмена.
Граничная ОЗТ — восстановление тепловых условий на границе тела. К этому типу задач отнесем также задачу, связанную с продолжением решения уравнения теплопроводности от некоторой границы, где одновременно заданы температура Т( х*, т) и плотность теплового потока q( х*, т);
Организация охлаждения конструкции камер сгорания является одним из важнейших вопросов проектирования и по сравнению с другими типами тепловых машин усложняется тем, что тепловые процессы протекают при высоких температурах К и давлениях. Так как высокотемпературные продукты сгорания движутся по камере с очень большой скоростью, то резко возрастают коэффициент конвективной теплоотдачи от горячих продуктов сгорания к стенкам камеры и конвективные тепловые потоки , доходящие в критическом сечении сопла до 23,26 – 69,78. Кроме того, теплообмен в конструкции характеризуется высоким уровнем радиации в камере, что приводит к большим лучистым тепловым потокам /13/.
Вследствие мощных суммарных конвективных и лучистых тепловых потоков в стенке камеры температура ее может достигать значений превышающих (1000 – 1500С. Величина этих потоков определяется значениями режимных параметров, составом продуктов сгорания в ядре газового потока и в пристеночном слое, а также температурой внутренней поверхности конструкции. Из-за изменения диаметра проточной части по длине теплопровод от продуктов сгорания оказывается неравномерным. Неравномерным является также распределение температуры по периметру, обусловленное изменением состава продуктов сгорания.
Коэффициент теплоотдачи от продуктов сгорания определяется с учетом совместного воздействия конвективного и лучистого теплового потоков в соответствующем сечении конструкции узла по значениям параметров (давление, состав и температура продуктов сгорания в ядре газового потока и в пристеночном слое) на установившемся режиме эксплуатации /13/.
Время выхода рассматриваемых конструкций на установившийся тепловой режим соизмеримо и может оказаться даже большим времени их работы при эксплуатации. В этих условиях задача определения теплового состояния в период работы сводится к расчету прогрева их под воздействием высокотемпературных продуктов сгорания /1, 2/.
Рассмотрим следующую схему корпуса камеры сгорания.
На поверхности в сечении располагается по две точки замера, расположенных в диаметрально противоположных точках периметра корпуса.
В сечении I – I корпуса сопла можно представить в виде однослойной неограниченной пластины, двухслойной – сечение II – II (Рис.1).
Расчетные схемы элементов конструкции представлены на рисунке 2 и 3.
Обратная тепловая задача для пластины формулируется следующим образом. Требуется по замерам температуры и теплового потока к пластине (рис.2) при X = 0 найти изменения температуры и теплового потока на поверхности X = 1.
Решение обратной тепловой задачи в такой постановке целесообразно построить с использованием решения задачи Коши /3/.
В пространстве переменных задана некоторая гладкая поверхность Г. С каждой точкой связывается некоторое направление , некасательное Г.
В окрестности поверхности Г требуется найти решение уравнения.
удовлетворяющего условиям Коши
где – безразмерные время и координата.
Нетрудно убедиться, что решение задачи (1), (2), записанное в виде:
(3)
и является искомым /10/.
Утверждения о существовании решения (3), об аналитичности этого решения и его единственности в классе аналитических функций составляют содержание изве…