[vsesdal]
Количество страниц учебной работы: 18,10
Содержание:
«Задача № 1…………………………………………………………………………………………….3
Задача № 2…………………………………………………………………………………………….7
Задача № 3…………………………………………………………………………………………….9
Задача № 4……………………………………………………………………………………………13
Задача № 5……………………………………………………………………………………………17
Список использованной литературы……………………………………….………………………19
Задача №1.
Закрытый резервуар заполнен доверху жидкостью Ж температуры t1.
В вертикальной стенке резервуара имеется прямоугольное отверстие, закрытое крышкой. Крышка поворачивается вокруг оси О. Мановакуумметр показывает манометрическое давление Рм или вакуум Рв.
Жидкость нагревается до температуры t2.
Весом крышки пренебречь.
Резервуар считается абсолютно жёстким.
Определить минимальное начальное F1 и конечное F2 усилия, которые следует приложить для удержания крышки.
Построить эпюры гидростатического давления жидкости на стенку, к которой прикреплена крышка.
Исходные данные
Н А d В Ж t1 t2 h Рм Рв R
м м м м 0С 0С м кПа кПа м
12 8 4 8 Спирт 20 40 1,5 7 1 0,6
Задача №2.
Определить расход жидкости вытекающей через насадок из резервуара, в котором поддерживается постоянный уровень жидкости Н. Диаметр насадка d.
Построить эпюру давления на стенку, в которой расположен насадок.
Определить длину насадка.
Исходные данные
Н ? d h
м 0 м м
14 6 0.03 8
Задача№3.
Из большого закрытого резервуара, в котором поддерживается постоянный уровень, вытекает в атмосферу жидкость Ж по трубопроводу.
Расход жидкости Q.
Температура жидкости t.
Длинна труб l1 и l2.
Диаметр труб d1 и d2.
Трубы изготовлены из материала М.
Определить напор Н.
Построить напорную и пьезометрическую линии.
Исходные данные
Р0 l1 d1 l2 d2 t Ж h M Q
кПа м м м м 0С м л/с
1.1 150 0.015 800 0.03 10 Спирт 0.2 Пластмасса 0.05
Задача№4.
Центробежный насос, графическая характеристика которого задана, подаёт воду на геометрическую высоту Нг. Температура воды t. Трубы всасывания dв и нагнетания dн имеют длину соответственно lв и lн. Эквивалентная шороховатость ?э. Избыточное давление в нагнетательном резервуаре Р2 остаётся постоянным. Избыточное давление во всасывающем резервуаре Р1.
Найти рабочую точку при работе насоса на сети. Определить для неё допустимую высоту всасывания.
Исходные данные
Нг ?э lв dв lн dн Р0 Р1
м мм м м м м кПа кПа
5 0.03 6 0.3 1150 0.250 11 13
Задача№5.
На шток гидроцилиндра действует сила F.
Диаметр поршня гидроцилиндра D а диаметр штока d.
Определить давление, развиваемое насосом гидропривода, чтобы сохранить равновесие.
Силами трения в гидроцилиндре и в сети пренебречь.
Исходные данные
F d D
кН мм мм
180 15 30
Учебная работа № 187427. Контрольная Гидравлика 5 задач
Выдержка из похожей работы
Гидравлика и насосы
…..но разделение питательного насоса на бустерный и основной? В каких
случаях это делается?
.
Список литературы
1. Какие свойства жидкости, силы действуют на
жидкость, находящуюся в состоянии покоя, в движении? Перечислите физические
свойства жидкости
Жидкость в состоянии покоя или движения
находится под действием различных сил, которые можно разделить на объемные и
поверхностные.
Объемные силы.
Эти силы действуют на каждый элемент данного
объема жидкости и пропорциональны массе, заключенной в данном объеме. К ним
относятся силы тяжести, силы инерции и центробежные силы.
Характеристикой интенсивности силы тяжести G,
действующей на данный объем V, является удельный вес жидкости:
у = Km (С7Ю = lim (gmiV) = pg [Н/м3],
Предел отношения массы жидкости к объему при его
стягивании в точку называют плотностью р жидкости:
р = lim
(ifi/F)
= y/g
[к/м3].
Удельный вес и плотность капельных жидкостей
обычно определяют экспериментально, их значения мало зависят от давления или
температуры.
Плотность газов при сравнительно низких давлениях может быть рассчитана по
уравнению состояния идеальных газов:
р = m/V = PMf(RT), где R универсальная зона.
При повышенных давлениях плотность газов
рассчитывают, например, с учетом коэффициента сжимаемости (Z), который
определяется как функция (представляемая графической зависимостью) от
приведенной температуры Тир и приведенного давления Рар:
P = PM/ (ZRn Z=f(Tap,Pm).
Поверхностные силы.
Они действуют на поверхности ограничивающей
данный объем жидкости и отделяющей его от окружающей среды. К ним относятся
силы давления и силы внутреннего трения (силы вязкости). При равновесии
покоящейся жидкости на нее действуют силы тяжести и силы давления, в то время
как закономерности движения жидкостей (реальных) определяются действием не
только сил тяжести и давления, но и в очень большой степени силами внутреннего трения
(силами вязкости).
Характеристикой интенсивности поверхностных сил
является напряжение т, создаваемое ими на поверхности S, ограничивающей данный
объем V. Это предел отношения сил к площади поверхности при ее стремлении к
нулю:
= lim (Fs/AS) [Н/м2].
Нормальная составляющая этих напряжений
вызывается поверхностными силами (Fs), действующими перпендикулярно поверхности
в данной точке. Параметром, отражающим действие сил давления жидкости на дно и
стенки сосуда, в котором она находится, а также на поверхность любого
погруженного в нее тела, является гидростатическое давление. Выделим внутри
жидкости, находящейся в покое, площадку AS. На эту площадку по нормали к ней
внутрь жидкости будет действовать сила давления столба жидкости АР. Отношение
AP/AS представляет собой среднее гидростатическое давление, а предел этого
отношения при AS ->0 называют гидростатическим давлением в данной точке, или
просто гидростатическим давлением Р.
Сила АР в любой точке площадки AS направлена по
нормали к ней. Если бы сила АР была направлена под углом к AS, ее можно было бы
разложить на две составляющие: направленную нормально и направленную касательно
к площадке AS. Последняя вызвала бы перемещение элемента жидкости и вывела бы
жидкость из состояния покоя, что невозможно, так как противоречило бы исходному
условию покоя. Отсюда становится понятным тот факт, что давление в любой точке
жидкости одинаково во всех направлениях, так как в противном случае происходило
бы пе…