[vsesdal]
Количество страниц учебной работы: 3,7
Содержание:
«6.1. Координаты материальной точки изменяются со временем по закону . Чему равен модуль радиус–вектора точки (в метрах) в момент времени t = 1 с (с округлением до десятых долей)? В какой плоскости движется точка?
6.2. Диск радиуса Rд = 25 см начинает вращаться из состояния покоя в горизонтальной плоскости вокруг оси Z, проходящей перпендикулярно его плоскости через его центр. Зависимость проекции угловой скорости от времени показана на графике. На каком интервале времени тангенциальное ускорение точки, расположенной на расстоянии R = 20 см от центра диска, равно a? = 0,2 м/с2?
6.3. Из жести вырезали три одинаковые детали в виде эллипса. Две детали разрезали на четыре одинаковые части. Затем все части отодвинули друг от друга на одинаковое расстояние и расставили симметрично относительно оси ОО. Для моментов инерции относительно оси ОО справедливо соотношение …
1) I1< I2 < I3 ; 2) I1 = I2 < I3 ;
3) I1< I2 = I3 ; 4) I1 > I2 > I3 .
6.4. На рисунке представлен график зависимости кинетической энергии вращающегося тела от угла поворота ?. Как изменяется вращающий момент М с увеличением угла ?? »
Учебная работа № 188643. Контрольная Механика поступательного и вращательного движения, 5 задач
Выдержка из похожей работы
Механика жидкостей и газов в законах и уравнениях
…..
Рис.39.2. За время Δt
через поверхность S пройдут
все частицы жидкости, заключённые в объёме между S и S’
можно провести через любую точку
пространства. Если построить все мыслимые линии
тока, они просто сольются друг с другом. Поэтому для наглядного
представления течения жидкости строят лишь часть линий, выбирая их так, чтобы
густота линий тока была численно равна модулю скорости в данном месте. Тогда по картине линий тока можно судить не только о направлении, но и о модуле вектора v в разных точках пространства. Например, в точке
А на рис.39.1 густота линий, а следовательно и модуль v,
чем в точке В. Поскольку разные частицы жидкости
могут проходить через данную точку пространства с разными скоростями
(т. е. v = v(t)), картина линий тока, вообще говоря, все время изменяется. Если скорость
в каждой точке пространства остается
постоянной (V=const), то течение жидкости Называется стационарным (установившимся).
При стационарном течении любая частица жидкости проходит через данную точку пространства с одной и той
же скоростью v. Картина линий тока при
стационарном течении остается неизменной,
и линии тока в этом случае совпадают с траекториями частиц. Если
через все точки небольшого замкнутого контуpa провести линии тока, образуется поверхность, которую называют трубкой
тока. Вектор v касателен к поверхности трубки тока в каждой ее точке. Следовательно,
частицы жидкости при своем движении не пересекают стенок трубки тока.
Возьмем трубку тока, достаточно
тонкую для того, чтобы во всех точках ее
поперечного сечения S скорость частиц v была одна и та же (рис. 39.2). При
стационарном течении трубка тока подобна стенкам жесткой трубы. Поэтому через
сечение 5 пройдет за время Δt объем
жидкости, равный SvΔt, а в единицу времени объем
(39.1)
Жидкость, плотность которой всюду одинакова и
изменяться не может, называется несжимаемой. На рис. 39.3 изображены два
сечения очень тонкой трубки тока — S1 и S2. Если жидкость несжимаема , то кол
– во ее между этими сечениями остается неизменным. Отсюда следует, что
Рис
39.4. При движении в сужающейся трубке скорость частиц возрастает – частицы
движутся ускоренно.
Рис39.3.
Для несжимаемой жидкости при стационарном течении S1v1=S2v2
объемы жидкости, протекающие в
единицу времени через сечения S1 и S2, должны быть одинаковыми:
(39.2)
(напомним, что через боковую
поверхность трубки тока частицы жидкости не проникают).
Равенство (39.2) справедливо для
любой пары произвольно взятых сечений. Следовательно, для несжимаемой жидкости при стационарном течении произведение
Sv в любом сечении данной трубки тока имеет одинаковое
значение:
(39.3)
Это утверждение
носит название теоремы о неразрывности струи.
Мы получили формулу (39.3) для
несжимаемой жидкости. Однако она применима к реальным жидкостям и даже к газам
в том случае, когда их сжимаемостью можно пренебречь. Расчеты показывают, что при движении газов со скоростями, много меньшими скорости
звука в этой среде, их можн…