[vsesdal]
Количество страниц учебной работы: 10,7
Содержание:
«Вариант № 2
102. Материальная точка движется прямолинейно с ускорением a = 5 м/с2. Определить, на сколько путь, пройденный точкой в п-ю секунду, будет больше пути, пройденного в предыдущую секунду. Принять ?0 = 0.
112. С тележки, свободно движущейся по горизонтальному пути со скоростью ?1 = 3 м/c, в сторону, противоположную движению тележки, прыгает человек, после чего скорость тележки изменилась и стала равной u1 = 4 м/c. Определить горизонтальную составляющую скорости u2x человека при прыжке относительно тележки. Масса тележки M = 210 кг, масса человека m = 70 кг.
122. По небольшому куску мягкого железа, лежащему на наковальне массой m1 = 300 кг, ударяет молот массой m2 = 8 кг. Определить КПД ? удара, если удар неупругий. Полезной считать энергию, пошедшую на деформацию куска железа.
132. Из шахты глубиной h = 600 м поднимают клеть массой m1 = 3,0 т на канате, каждый метр которого имеет массу m = 1,5 кг. Какая работа A совершается при поднятии клети на поверхность земли? Каков коэффициент полезного действия ? подъёмного устройства?
142. По касательной к шкиву маховика в виде диска диаметром D = 75 см и массой m = 40 кг приложена сила F = 1 кН. Определить угловое ускорение ? и частоту вращения n маховика через время t = 10 с после начала действия силы, если радиус r шкива равен 12 см. Силой трения пренебречь.
152. На скамье Жуковского стоит человек и держит в руках стержень вертикально по оси скамьи. Скамья с человеком вращается с угловой скоростью ?1 = 4 рад/c. С какой угловой скоростью ?2 будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5 кг?м2. Длина стержня l = 1,8 м, масса m = 6 кг. Считать, что центр масс стержня с человеком находится на оси платформы.
162. Какая робота A будет совершена силами гравитационного поля при падении на Землю тела массой m = 2 кг: 1) с высоты h = 1000 км; 2) из бесконечности?
172. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых x = A1?sin ?1?t и y = A2?соs ?2?t, где A1 = 8 см, A2 = 4 см, ?1 = ?2 = 2 с–1. Написать уравнение траектории и построить её. Показать направление движения точки.
»
Учебная работа № 188664. Контрольная Механика вариант 2
Выдержка из похожей работы
Механика жидкости и газа
…..ние. 24
Список
использованной литературы. 27
Введение.
Как манна небесная свалилось на
учёных-физиков XIX века совпадение положений кинетической теории газов
с экспериментальными результатами, полученными в рамках термодинамики. Два
физических подхода – макроскопический (термодинамический) и микроскопический
(молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество
состоит из молекул, а те, в свою очередь, из атомов нашла убедительное
подтверждение.
Казалось, на основе кинетической
теории, легко можно определить свойства газов, поскольку достаточно знать
свойства входящих в состав молекулы атомов для определения свойств самого
вещества, но в действительности всё оказалось не так просто. Благодаря этой
теории удалось определить лишь некоторые свойства газов, например, вывести
уравнение состояния газа, но для определения таких характеристик газов как
коэффициенты теплопроводности, вязкости и диффузии нужно было серьёзно
потрудиться. Для конденсированных сред — твёрдых тел, жидкостей и сжатых газов
получить результаты было ещё труднее, поскольку должно учитываться то, что молекулы
взаимодействуют между собой не только при ударах. Поэтому, говорить о том, что
все физические явления микромира могут быть объяснены и рассчитаны на основе
молекулярно-кинетических представлений, не приходиться.
Дискретное (не сплошное)
строение вещества было обнаружено лишь в конце XIX века, а опыты,
доказывающие существование молекул, проведены в 1908 году французским физиком
Жаном Батистом Перреном. Обнаружение дискретной структуры строения вещества
позволило определить границы применимости механики сплошных сред. Она работает
только в тех случаях, когда систему можно разбить на малые объёмы, в каждом из
которых содержиться всё же достаточно большое количество частиц, чтобы оно
подчинялось статистическим закономерностям. Тогда элементы среды находятся в
состоянии термодинамического равновесия, а их свойства описываются небольшим
числом макроскопических параметров. Изменения в таком малом объёме должны
происходить достаточно медленно, чтобы термодинамическое равновесие
сохранялось.
При выполнении этих условий,
справедлива гипотеза о сплошности среды, которая лежит в основе механики
сплошной среды. Сплошной средой считается не только твёрдое тело, жидкость или
газ, но и плазма (даже сильно разряженная), такая, как звёздный ветер. Число
частиц в элементе объёма такой среды невелико, но благодаря большому радиусу
действия сил между заряженными частицами микроскопические параметры меняются от
элемента к элементу непрерывно.
Как движется в вакууме
материальная точка досконально известно со времён Исаака Ньютона. Гораздо
сложнее описать её движение в воздухе, воде или другой среде. Именно с этими
вопросами имеет дело, являющаяся разделом физики, наука гидроаэромеханика.
Гидроаэромеханика.
Несмотря на то, что газ и
жидкость – разные фазовые состояния вещества, гидроаэромеханика (механика
текучих веществ), в изучении этих фаз вещества, не разделяет их, а изучает их
механические свойства, взаимодействие этих свойств между собой и с граничащими
с ними твёрдыми телами. Гидроаэромеханика состоит из нескольких разделов:
1.
движение со скоростью,
много меньшей скорости звука, изучает гидродинамика.
2.
Если скорость движения
тела приблизительно равна скорости звука или превышает оную, такое движение
исследует газовая динамика.
3.
изучение движения тел и
летательных аппаратов в атмосфере относиться к разделу аэромеханики.
Объединяющими все разделы
гидроаэромеханики цели – улучшить форму летательных аппаратов, автомобилей;
добиться наибольшей эффективности устройств, использующих жидкость или газ
(двигателей реактивных самолётов или впрыскивателей топлива в двигателях
внутреннего сгорания); оптимизировать производственные процессы, связанные с
использованием жидкости или газа (аэрозольное нанесение покрытий, создание
оптических волокон, т. д.). Гидроаэромеханика
…