[vsesdal]
Количество страниц учебной работы: 2,10
Содержание:
«Задание 5
Расчет внутренних силовых факторов и параметров вала при деформации кручения
Дано: К валу приложены внешние моменты М1, М2, М3.
М1=1кН*м, М2=2кН*м, М3=1кН*м.
Определить диаметры поперечных сечений участков вала, если [?]=100 МПа, [?]=1,50/м. G=80 ГПа. Построить эпюру крутящих моментов МК на участках вала, эпюру углов поворота сечений ?
»
Учебная работа № 187538. Контрольная Расчет внутренних силовых факторов и параметров вала при деформации кручения
Выдержка из похожей работы
Определение внутренних силовых факторов. Метод сечения
….. по сечению в котором
следует определить величину внутренних усилий (см. рис.1а).
вторая операция. Отбрасываем какую-либо часть стержня, например, часть 1
(рис. 1б). Обычно отбрасывают ту часть, к которой приложено большее число сил.
третья
операция. Заменяем силы, действующие на оставшуюся часть главным вектором и главным моментом ,
совместив центр приведения О с центром тяжести (ц.т.) сечения ( на рис.1,б М не
показан ).
четвертая
операция. Уравновешиваем оставшуюся часть , так как до рассечения она
находилась в равновесии. Для этого в точке О прикладываем силу R и момент M (на
рис. не показан), равные и противоположно направленные главному вектору и главному моменту . Усилия и и
являются теми внутренними усилиями, которые передавались со стороны отброшенной
на оставшуюся часть стержня.
Метод
сечений является лишь первым шагом по пути исследования внутренних сил, так как
с его помощью не удается выяснить закон распределения внутренних сил в сечении.
Составляя
уравнения равновесия для отсечённой части тела, можно получить проекции на
координатные оси как главного вектора , так и главного момента (см. рис.1)
Рис.1
При расчёте брусьев начало координат помещают в центре тяжести
рассматриваемого поперечного сечения его. Ось «Z» в прямом брусе
совмещают с его продольной осью, в кривом — направляют по касательной к его оси
в точке, где помещено начало координат.
Оси
«X» и «Y» совмещают с направлениями главных центральных
осей инерции рассматриваемого сечения. Проекции на координатные оси главного
вектора и главного момента внутренних сил в брусе обозначают соответственно: ,, N, Mx, My, и называют внутренними силовыми факторами
(внутренними усилиями).
, — представляют собой поперечные силы в направлении
оси «X» или «Y» (Н)- нормальную (продольную) силу (н.)., My
— изгибающие моменты относительно осей соответственно «X» или
«Y» (нм)- крутящий момент (нм).
Рассмотрев
отсечённую часть бруса (например правую) (рис.1,б) и составив на основании
метода сечений уравнения равновесия, можно сказать следующее:
нормальная
сила N есть сила внутренняя, численно равная сумма проекции на продольную ось
бруса всех внешних сил, расположенных по одну сторону от рассматриваемого
сечения.
-поперечная
сила в направлении оси «X» численно равна сумме проекций на ось
«X» всех внешних сил, расположенных по одну сторону от
рассматриваемого сечения.
—
поперечная сила в направлении оси «Y» численно равна сумме проекций
на ось «Y» всех внешних сил, расположенных по одну сторону от
рассматриваемого сечения- изгибающий момент относительно оси «X»
численно равна сумме моментов всех внешних сил, расположенных по одну сторону
от этого сечения.- изгибающий момент относительно оси «Y» численно
равна сумме моментов всех внешних сил, расположенных по одну сторону от этого
сечения.- изгибающий момент относительно оси «Z» численно равна сумме
моментов всех внешних сил, расположенных по одну сторону от этого сечения.
Итак,
в общем случае нагружения бруса внутренние силы в его поперечных сечениях
приводятся к указанным шести внутренним силовым факторам.
Всякий
стержень, работающий на изгиб, называется балкой.
Внешними
силами, вызывающими изгиб балок, являются активные нагрузки и реакции опор
(рис.2).
Рис. 2
Активные силы полагаются известными и сводятся к сосредоточенным силам
F(H), парам сил m (нм) и распределенным по длине балки нагрузкам q (н/м).
Величина и направление реакций R1,R2 определяются из условия равновесия балки и
вида её опорных закреплений.
Балки могут иметь следующие три типа опор:
. Жёсткое защемление или …