[vsesdal]
Количество страниц учебной работы: 9,6
Содержание:
ЗАДАЧА C1 вариант 51
Дано: Жесткая рама имеет в точке А неподвижную шарнирную опору, а в точке В – подвижную шарнирную опору на катках.
Найти: реакции в точках А и В, вызываемые действующими нагрузками.
ЗАДАЧА C2 вариант 51
Дано: Горизонтальная плита весом Р закреплена сферическим шарниром в точке А, цилиндрическим шарниром в точке В и невесомым стержнем. Вес плиты ,.
Найти: реакции в точках А и В и реакцию стержня.
ЗАДАЧА К1 вариант 51
Дано:
Найти: уравнение траектории точки; определить скорость и ускорение точки, а также ее касательное и нормальное ускорения и радиус кривизны в соответствующей точке траектории.
Задача вариант 51
Дано:
Найти
Задача Д1 вариант 51
Груз D массой m, получив в точке А начальную скорость , движется по изогнутой трубе АВС, расположенной в вертикальной плоскости.
На участке АВ на груз кроме силы тяжести действует постоянная сила Q и сила сопротивления среды R, зависящая от скорости груза v.
В точке В груз, не изменяя своей скорости, переходит на участок ВС, где на него кроме силы тяжести действуют сила трения и переменная сила F. Найти закон движения груза на участке ВС.
Задача Д2 вариант 51
Механическая система состоит из прямоугольной вертикальной плиты массой m1=24 кг и груза D массой m2=8 кг. Плита имеет в момент времени t0=0 с угловую скорость . Ось Z находится от центра масс С платформы на расстоянии . R=0,8 м. В момент времени по желобу начинает двигаться груз Д массой m2=8 кг по закону .
Определить зависимость .
Стоимость данной учебной работы: 585 руб.

 

    Форма заказа работы
    ================================

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Учебная работа № 188738. Контрольная Теоретическая механика. Вариант 51

    Выдержка из похожей работы

    …….

    Механика жидкости и газа

    …..жимаемость. 21
    Аналогии
    между течением жидкости и газа. 23
    Заключение. 24
    Список
    использованной литературы. 27
     
    Введение.
    Как манна небесная свалилось на
    учёных-физиков XIX века совпадение положений кинетической теории газов 
    с экспериментальными результатами, полученными в рамках термодинамики. Два
    физических подхода – макроскопический  (термодинамический) и микроскопический
    (молекулярно-кинетический) – дополнили друг друга. Идея о том, что вещество
    состоит из молекул, а те, в свою очередь, из атомов нашла убедительное
    подтверждение.
    Казалось, на основе кинетической
    теории,  легко можно определить свойства газов, поскольку достаточно знать
    свойства входящих в состав молекулы  атомов  для определения свойств самого
    вещества, но в действительности всё оказалось не так просто. Благодаря этой
    теории удалось определить лишь некоторые свойства газов, например, вывести
    уравнение состояния газа, но для определения таких характеристик газов как
    коэффициенты теплопроводности, вязкости и диффузии нужно было серьёзно
    потрудиться. Для конденсированных сред —  твёрдых тел, жидкостей и сжатых газов
    получить результаты было ещё труднее, поскольку должно учитываться то, что молекулы
    взаимодействуют между собой не только при ударах. Поэтому, говорить о том, что
    все физические явления микромира могут быть объяснены и рассчитаны на основе
    молекулярно-кинетических представлений,  не приходиться.
    Дискретное (не сплошное)
    строение вещества было обнаружено лишь в конце XIX века, а опыты,
    доказывающие существование молекул, проведены в 1908 году французским физиком
    Жаном Батистом Перреном. Обнаружение дискретной структуры строения  вещества 
    позволило определить границы применимости механики сплошных сред. Она работает
    только в тех случаях, когда систему можно разбить на малые объёмы, в каждом из
    которых содержиться всё же достаточно большое количество частиц, чтобы оно
    подчинялось статистическим закономерностям. Тогда элементы среды находятся в
    состоянии термодинамического равновесия, а их свойства описываются небольшим
    числом макроскопических параметров. Изменения в таком малом объёме должны
    происходить достаточно медленно, чтобы термодинамическое равновесие
    сохранялось.
    При выполнении этих условий,
    справедлива гипотеза о сплошности среды, которая лежит в основе механики
    сплошной среды. Сплошной средой считается не только твёрдое тело, жидкость или
    газ, но и плазма (даже сильно разряженная), такая, как звёздный ветер. Число
    частиц в элементе объёма такой среды невелико, но благодаря большому радиусу
    действия сил между заряженными частицами микроскопические параметры меняются от
    элемента к элементу непрерывно.
    Как движется в вакууме
    материальная точка досконально известно со времён Исаака Ньютона. Гораздо
    сложнее описать её движение в воздухе, воде или другой среде. Именно с этими
    вопросами имеет дело, являющаяся разделом физики,  наука  гидроаэромеханика.
    Гидроаэромеханика.
    Несмотря на то, что газ и
    жидкость – разные фазовые состояния вещества, гидроаэромеханика (механика
    текучих веществ), в изучении этих фаз вещества, не раздел…