[vsesdal]
Количество страниц учебной работы: 20
Содержание:
«Содержание
Статика 3
Задача С1 3
Кинематика 6
Задача К1 6
Задача К2 10
Динамика 14
Задача Д2 14
Задача Д3 18
Статика
Задача С1
Дано:
P=25 кН, М=100 кНм, F1=10 кН, F4=40 кН, а=0,5 м.
Найти:
Реакции связей в т. А и В
Кинематика
Задача К1
Дано:
Уравнение движения точки в плоскости ху:
, ; 1 с.
Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент .
Задача К2
Дано:
r1= 2 см, R1= 4 см, r2= 6 см, R2= 8 см, r3= 12 см, R3= 16 см, , t1=2 c.
Найти:
скорости , , ускорения , , .
Динамика
Задача Д2
Дано:
, 1 кг, 300 Н/м, 150 Н/м, 0 Н/м, 0 м/с2, 0,1 м, 0 м, 15 с-1, 0 Нс/м, 0 м, 0 м/с.
Найти:
– закон движения груза по отношению к лифту
Задача Д3
Дано:
2 кг, 6 кг, 12 кг, r=0,4 м, R=0,8 м, , .
Найти:
– закон движения плиты
»
Учебная работа № 186381. Контрольная Теоретическая механика, вариант 90
Выдержка из похожей работы
Теоретическая физика: механика
…..ования переменных – это такие преобразования, при
которых сохраняется канонический вид уравнений Гамильтона. Преобразования
производят с помощью производящей функции, которая является функцией
координат, импульсов и времени. Полный дифференциал производящей функции
определяется следующим образом: [pic] (1) Выбирая производящую функцию от тех или иных переменных, получаем
соответствующий вид канонических преобразований. Заметим, что если частная
производная будет браться по «малым» [pic], то будем получать малое [pic],
если же по «большим» [pic], то и получать будем соответственно [pic]. Функция Гамильтона-Якоби При рассмотрении действия, как функции координат (и времени), следует
выражение для импульса: [pic] (2) Из представления полной производной действия по времени следует
уравнение Гамильтона-Якоби: [pic] (3) Здесь действие рассматривается как функция координат и времени: [pic]. Путем интегрирования уравнения Гамильтона-Якоби (3), находят
представление действия в виде полного интеграла, который является функцией
s координат, времени, и s+1 постоянных (s – число степеней свободы).
Поскольку действие входит в уравнение Гамильтона-Якоби только в виде
производной, то одна из констант содержится в полном интеграле аддитивным
образом, т.е. полный интеграл имеет вид: [pic] (4) Константа А не играет существенной роли, поскольку действие входит везде
лишь в виде производной. А определяет, что, фактически, лишь s констант
меняют действие существенным образом. Эти константы определяются начальными
условиями на уравнения движения, которые для любого значения А будут иметь
одинаковый вид, как и само уравнение Гамильтона-Якоби. Для того чтобы выяснить связь между полным интегралом (4) уравнения Г.-
Я. (3) и интересующими нас уравнениями движения, необходимо произвести
каноническое преобразование, выбрав полный интеграл действия в качестве
производящей функции. Константы [pic] будут выступать в качестве новых импульсов. Тогда новые
координаты [pic] (5) тоже будут константы, поскольку [pic] (6) Выражая из уравнения (5) координаты [pic] в виде функций от [pic], мы и
получим закон движения: [pic] (7) Решение задачи на нахождение зависимости (7) существенно упрощается в
случае разделения переменных. Такое возможно, когда какая-то координата
[pic] может быть связана лишь с соответствующим ей импульсом [pic] и не
связана ни с какими другими импульсами или координатами, входящими
уравнение Г.-Я. В частности это условие выполняется для циклических
переменных. Итак, нахождение уравнений движения методом Гамильтона-Якоби сводится к
следующему: 1. составить функцию Гамильтона; 2. записать уравнение Г.-Я., и определить какие переменные разделяются; 3. Путем интегрирования уравнения Г.-Я. получить вид полного интеграла [pic]; 4. Составить систему s уравнений[pic], и получить закон движения [pic]; 5. По необходимости найти закон изменения импульсов: [pic]. Для чего продифференцировать полный интеграл по координатам [pic], а потом подставить их явный вид, полученный в пункте 4. Примеры решения задач №11.14 [4] Как известно, замена функции Лагранжа [pic] на [pic], (1.1) где [pic] – произвольная функция, не изменяет уравнений Лагранжа.
Показать, что это преобразование является каноническим, и найти его
производящую функцию. Решение: Перепишем штрихованную функцию Лагранжа, представив полную производную
функции [pic] через частные: [pic] (1.2) Функции Гамильтона, соответствующие штрихованной и не штрихованной
функциям Лагранжа, определяются…