решить задачу
Количество страниц учебной работы: 20
Содержание:
“Содержание

Статика 3
Задача С1 3
Кинематика 6
Задача К1 6
Задача К2 10
Динамика 14
Задача Д2 14
Задача Д3 18

Статика
Задача С1

Дано:
P=25 кН, М=100 кНм, F1=10 кН, F4=40 кН, а=0,5 м.
Найти:
Реакции связей в т. А и В

Кинематика
Задача К1

Дано:
Уравнение движения точки в плоскости ху:

, ; 1 с.

Найти: уравнение траектории точки; скорость и ускорение, касательное и нормальное ускорение и радиус кривизны траектории в момент .

Задача К2

Дано:
r1= 2 см, R1= 4 см, r2= 6 см, R2= 8 см, r3= 12 см, R3= 16 см, , t1=2 c.
Найти:
скорости , , ускорения , , .

Динамика
Задача Д2

Дано:
, 1 кг, 300 Н/м, 150 Н/м, 0 Н/м, 0 м/с2, 0,1 м, 0 м, 15 с-1, 0 Нс/м, 0 м, 0 м/с.
Найти:
– закон движения груза по отношению к лифту

Задача Д3

Дано:
2 кг, 6 кг, 12 кг, r=0,4 м, R=0,8 м, , .
Найти:
– закон движения плиты

Стоимость данной учебной работы: 585 руб.

 

    Форма заказа работы
    ================================

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Учебная работа № 186381. Контрольная Теоретическая механика, вариант 90

    Выдержка из похожей работы

    …….

    Теоретическая физика: механика

    …..ования переменных – это такие преобразования, при
    которых сохраняется канонический вид уравнений Гамильтона. Преобразования
    производят с помощью производящей функции, которая является функцией
    координат, импульсов и времени. Полный дифференциал производящей функции
    определяется следующим образом: [pic] (1) Выбирая производящую функцию от тех или иных переменных, получаем
    соответствующий вид канонических преобразований. Заметим, что если частная
    производная будет браться по “малым” [pic], то будем получать малое [pic],
    если же по “большим” [pic], то и получать будем соответственно [pic]. Функция Гамильтона-Якоби При рассмотрении действия, как функции координат (и времени), следует
    выражение для импульса: [pic] (2) Из представления полной производной действия по времени следует
    уравнение Гамильтона-Якоби: [pic] (3) Здесь действие рассматривается как функция координат и времени: [pic]. Путем интегрирования уравнения Гамильтона-Якоби (3), находят
    представление действия в виде полного интеграла, который является функцией
    s координат, времени, и s+1 постоянных (s – число степеней свободы).
    Поскольку действие входит в уравнение Гамильтона-Якоби только в виде
    производной, то одна из констант содержится в полном интеграле аддитивным
    образом, т.е. полный интеграл имеет вид: [pic] (4) Константа А не играет существенной роли, поскольку действие входит везде
    лишь в виде производной. А определяет, что, фактически, лишь s констант
    меняют действие существенным образом. Эти константы определяются начальными
    условиями на уравнения движения, которые для любого значения А будут иметь
    одинаковый вид, как и само уравнение Гамильтона-Якоби. Для того чтобы выяснить связь между полным интегралом (4) уравнения Г.-
    Я. (3) и интересующими нас уравнениями движения, необходимо произвести
    каноническое преобразование, выбрав полный интеграл действия в качестве
    производящей функции. Константы [pic] будут выступать в качестве новых импульсов. Тогда новые
    координаты [pic] (5) тоже будут константы, поскольку [pic] (6) Выражая из уравнения (5) координаты [pic] в виде функций от [pic], мы и
    получим закон движения: [pic] (7) Решение задачи на нахождение зависимости (7) существенно упрощается в
    случае разделения переменных. Такое возможно, когда какая-то координата
    [pic] может быть связана лишь с соответствующим ей импульсом [pic] и не
    связана ни с какими другими импульсами или координатами, входящими
    уравнение Г.-Я. В частности это условие выполняется для циклических
    переменных. Итак, нахождение уравнений движения методом Гамильтона-Якоби сводится к
    следующему: 1. составить функцию Гамильтона; 2. записать уравнение Г.-Я., и определить какие переменные разделяются; 3. Путем интегрирования уравнения Г.-Я. получить вид полного интеграла [pic]; 4. Составить систему s уравнений[pic], и получить закон движения [pic]; 5. По необходимости найти закон изменения импульсов: [pic]. Для чего продифференцировать полный интеграл по координатам [pic], а потом подставить их явный вид, полученный в пункте 4. Примеры решения задач №11.14 [4] Как известно, замена функции Лагранжа [pic] на [pic], (1.1) где [pic] – произвольная функция, не изменяет уравнений Лагранжа.
    Показать, что это преобразование является каноническим, и найти его
    производящую функцию. Решение: Перепишем штрихованную функцию Лагранжа, представив полную производную
    функции [pic] через частные: [pic] (1.2) Функции Гамильтона, соответствующие штрихованной и не штрихованной
    функциям Лагранжа, определяются…