[vsesdal]
Количество страниц учебной работы: 3,6
Содержание:
4. Луч света, падая на поверхность клина с углом α нормально, движется вдоль него со скоростью υ. С какой частотой происходит чередование мак-симумов освещенности в точке падения луча на клин? Длина волны света λ, показатель преломления вещества клина n.
4. Найдите энергию связи электрона в основном состоянии водородоподобных ионов. В спектре которых длина волны третьей линии серии Бальмера равна 108,5 нм.
Стоимость данной учебной работы: 585 руб.

 

    Форма заказа работы
    ================================

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским соглашением и даю согласие на обработку своих персональных данных.

    Учебная работа № 188789. Контрольная Физика, 2 задачи

    Выдержка из похожей работы

    …….

    Задачи и уравнения математической физики

    …..
    Решение
    Составим таблицу рассчитанных и теоретических
    значений первых восьми собственных частот колебаний стержня, а так же их
    относительных погрешностей.
    Расчетные формулы для определения собственных
    частот и форм колебаний стержня (одномерное волновое уравнение) имеют следующий
    вид:
     
    Где  = ;
     — модуль упругости — ;
     — площадь поперечного сечения — ;
     — погонная плотность стержня — ;
     — длина стержня — .
    Теоретическая собственная частота в
    Герцах:
    Где  — теоретическая частота собственной
    формы колебаний номер .
    Таблица собственных частот:
    Номер
    частоты
    Теоретическая
    частота, Гц
    Расчетная
    частота, Гц
    Погрешность,
    %
    1
    41,2390
    4,85
    2
    122,8000
    5,55
    3
    201,6100
    6,96
    4
    275,9200
    9,05
    5
    344,0600
    11,79
    6
    404,5200
    15,15
    7
    455,9500
    19,08
    8
    497,1900
    23,52 Yandex.RTB R-A-98177-2
    (function(w, d, n, s, t) {
    w[n] = w[n] || [];
    w[n].push(function() {
    Ya.Context.AdvManager.render({
    blockId: «R-A-98177-2»,
    renderTo: «yandex_rtb_R-A-98177-2»,
    async: true
    });
    });
    t = d.getElementsByTagName(«script»)[0];
    s = d.createElement(«script»);
    s.type = «text/javascript»;
    s.src = «//an.yandex.ru/system/context.js»;
    s.async = true;
    t.parentNode.insertBefore(s, t);
    })(this, this.document, «yandexContextAsyncCallbacks»);
     
    Где  — текущая координата стержня;
     — произвольная амплитуда;
     — номер частоты.
    Скопируем экран с анимацией первых
    четырех форм колебаний в режиме следа, дополнив их графиками первых четырех
    форм колебаний и теоретическими значениями отклонений, соответствующих данной
    форме.
    колебание формула
    уравнение стержень
    Первая форма.
    Вторая форма.
    Третья форма.
    Четвертая форма.
    Задание 2. Поперечные колебания балки
    Начальные условия.

    варианта
    Длина
    стержня, метры
    Модуль
    упругости,
    9
    Решение
    Составим таблицу рассчитанных и теоретических
    значений первых восьми собственных частот колебаний балки, а так же их
    относительных погрешностей.
    Расчетные формулы для определения собственных
    частот и форм колебаний балки с двумя шарнирными заделками имеют следующий вид:
     
    Где  = ;
     — модуль упругости — ;
     — Момент инерции сечения балки
    относительно поперечной оси -;
     — погонная плотность стержня — ;
     — длина стержня — .
    Теоретическая собственная частота в
    Герцах:
    Где  — теоретическая частота собственной
    формы колебаний номер .
    Таблица собственных частот
    Номер
    частоты
    Теоретическая
    частота, Гц
    Расчетная
    частота, Гц
    Погрешность,
    %
    1
    1,5742
    0,87
    2
    6,2729
    0,49
    3
    14,0249